Documentation

AgentNexus Python

Python Library for AI/LLM Agent Development with UI-Driven Workflows and Actions

Get Started

AgentNexus enables developers to build powerful AI/LLM agents with interactive UIs and structured workflows. Get started quickly with our step-by-step guides.

Key Features

AgentNexus provides a comprehensive framework for developing AI/LLM agents:

  • Declarative Development: Create complex agents using intuitive Python decorators
  • Multi-Action Support: Define multiple agent actions endpoints within a single agent
  • Workflow-Driven Design: Build multi-step UI workflows with state management
  • Rich Component Library: Tables, forms, code editors, and markdown displays
  • Automatic Event Handling: Simplified component event management
  • Context-Aware State: Preserve state across workflow steps with sessions

Quick Example

from agentnexus.base_types import AgentConfig, Capability, ActionType
from agentnexus.action_manager import agent_action

# Define agent configuration
my_agent = AgentConfig(
    name="Quick Example Agent",
    version="1.0.0",
    description="A simple example agent",
    capabilities=[
        Capability(
            skill_path=["Example", "Demonstration"],
            metadata={"example": True}
        )
    ]
)

# Create a simple action
@agent_action(
    agent_config=my_agent,
    action_type=ActionType.GENERATE,
    name="Simple Action",
    description="A simple example action"
)
async def simple_action(input_data):
    """Handle a simple action."""
    return {"result": f"Processed: {input_data.message}"}

Need Help?